Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nanoscale ; 16(15): 7323-7340, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38511283

RESUMEN

Harnessing electrical or solar energy for the renewable production of value-added fuels and chemicals through catalytic processes (such as photocatalysis and electrocatalysis) is promising to achieve the goal of carbon neutrality. Owing to the large number of highly accessible active sites, highly porous structure, and charge separation/transfer ability, as well as excellent stability against chemical and electrochemical corrosion, zeolite imidazolate framework (ZIF)-based catalysts have attracted significant attention. Strategic construction of heterojunctions, and alteration of the metal node and the organic ligand of the ZIFs effectively regulate the binding energy of intermediates and the reaction energy barriers that allow tunable catalytic activity and selectivity of a product during reaction. Focusing on the currently existing critical issues of insufficient kinetics for electron transport and selective generation of ideal products, this review starts from the characteristics and physiochemical advantages of ZIFs in catalytic applications, then introduces promising regulatory approaches for advancing the kinetic process in emerging CO2 reduction, water splitting and N2 reduction applications, before proposing perspective modification directions.

2.
BMC Genomics ; 24(1): 766, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087211

RESUMEN

BACKGROUND: Sea cucumbers exhibit a remarkable ability to regenerate damaged or lost tissues and organs, making them an outstanding model system for investigating processes and mechanisms of regeneration. They can also reproduce asexually by transverse fission, whereby the anterior and posterior bodies can regenerate independently. Despite the recent focus on intestinal regeneration, the molecular mechanisms underlying body wall regeneration in sea cucumbers still remain unclear. RESULTS: In this study, transverse fission was induced in the tropical sea cucumber, Holothuria leucospilota, through constrainment using rubber bands. Histological examination revealed the degradation and loosening of collagen fibers on day-3, followed by increased density but disorganization of the connective tissue on day-7 of regeneration. An Illumina transcriptome analysis was performed on the H. leucospilota at 0-, 3- and 7-days after artificially induced fission. The differential expression genes were classified and enriched by GO terms and KEGG database, respectively. An upregulation of genes associated with extracellular matrix remodeling was observed, while a downregulation of pluripotency factors Myc, Klf2 and Oct1 was detected, although Sox2 showed an upregulation in expression. In addition, this study also identified progressively declining expression of transcription factors in the Wnt, Hippo, TGF-ß, and MAPK signaling pathways. Moreover, changes in genes related to development, stress response, apoptosis, and cytoskeleton formation were observed. The localization of the related genes was further confirmed through in situ hybridization. CONCLUSION: The early regeneration of H. leucospilota body wall is associated with the degradation and subsequent reconstruction of the extracellular matrix. Pluripotency factors participate in the regenerative process. Multiple transcription factors involved in regulating cell proliferation were found to be gradually downregulated, indicating reduced cell proliferation. Moreover, genes related to development, stress response, apoptosis, and cell cytoskeleton formation were also involved in this process. Overall, this study provides new insights into the mechanisms of whole-body regeneration and uncover potential cross-species regenerative-related genes.


Asunto(s)
Holothuria , Pepinos de Mar , Animales , Pepinos de Mar/genética , Holothuria/genética , Regeneración/genética , Perfilación de la Expresión Génica , Factores de Transcripción/genética
3.
Front Oncol ; 13: 1307838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144520

RESUMEN

Cancer remains the leading cause of death worldwide. In spite of significant advances in targeted and immunotherapeutic approaches, clinical outcomes for cancer remain poor. The aim of the present study was to investigate the potential mechanisms and therapeutic targets of Frondoside A for the treatment of liver, pancreatic, and bladder cancers. The data presented in our study demonstrated that Frondoside A reduced the viability and migration of HepG2, Panc02, and UM-UC-3 cancer cell in vitro. Moreover, we utilized the GEO database to screen and identify for differentially expressed genes (DEGs) in liver, pancreatic, and bladder cancers, which resulted in the identification of 714, 357, and 101 DEGs, respectively. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation were performed using the Metascape database for DEGs that were significantly associated with cancer development. The protein-protein interaction (PPI) networks of the identified DEGs in liver, pancreatic, and bladder cancers were analyzed using Cytoscape 3.9.0 software, and subsequently identified potential key genes that were associated with these networks. Subsequently, their prognostic values were assessed by gene expression level analysis and Kaplan-Meier survival analysis (GEPIA). Furthermore, we utilized TIMER 2.0 to investigate the correlation between the expression of the identified key gene and cancer immune infiltration. Finally, molecular docking simulations were performed to assess the affinity of Frondoside A and key genes. Our results showed a significant correlation between these DEGs and cancer progression. Combined, these analyses revealed that Frondoside A involves in the regulation of multiple pathways, such as drug metabolism, cell cycle in liver cancer by inhibiting the expression of CDK1, TOP2A, CDC20, and KIF20A, and regulates protein digestion and absorption, receptor interaction in pancreatic cancer by down-regulation of ASPM, TOP2A, DLGAP5, TPX2, KIF23, MELK, LAMA3, and ANLN. While in bladder cancer, Frondoside A regulates muscle contraction, complement and coagulation cascade by increase FLNC expression. In conclusion, the present study offers valuable insights into the molecular mechanism underlying the anticancer effects of Frondoside A, and suggests that Frondoside A can be used as a functional food supplement or further developed as a natural anti-cancer drug.

4.
Nutrients ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678249

RESUMEN

Bladder cancer is a highly recurrent disease and a common cause of cancer-related deaths worldwide. Despite recent developments in diagnosis and therapy, the clinical outcome of bladder cancer remains poor; therefore, novel anti-bladder cancer drugs are urgently needed. Natural bioactive substances extracted from marine organisms such as sea cucumbers, scallops, and sea urchins are believed to have anti-cancer activity with high effectiveness and less toxicity. Frondoside A is a triterpenoid glycoside isolated from sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A exhibits anti-proliferative, anti-invasive, anti-angiogenic, anti-cancer, and potent immunomodulatory effects. In addition, CpG oligodeoxynucleotide (CpG-ODN) has also been shown to have potent anti-cancer effects in various tumors models, such as liver cancer, breast cancer, and bladder cancer. However, very few studies have investigated the effectiveness of Frondoside A against bladder cancer alone or in combination with CpG-ODN. In this study, we first investigated the individual effects of both Frondoside A and CpG-ODN and subsequently studied their combined effects on human bladder cancer cell viability, migration, apoptosis, and cell cycle in vitro, and on tumor growth in nude mice using human bladder cancer cell line UM-UC-3. To interrogate possible synergistic effects, combinations of different concentrations of the two drugs were used. Our data showed that Frondoside A decreased the viability of bladder cancer cells UM-UC-3 in a concentration-dependent manner, and its inhibitory effect on cell viability (2.5 µM) was superior to EPI (10 µM). We also showed that Frondoside A inhibited UM-UC-3 cell migration, affected the distribution of cell cycle and induced cell apoptosis in concentration-dependent manners, which effectively increased the sub-G1 (apoptotic) cell fraction. In addition, we also demonstrated that immunomodulator CpG-ODN could synergistically potentiate the inhibitory effects of Frondoside A on the proliferation and migration of human bladder cancer cell line UM-UC-3. In in vivo experiments, Frondoside A (800 µg/kg/day i.p. for 14 days) alone and in combination with CpG-ODN (1 mg/kg/dose i.p.) significantly decreased the growth of UM-UC-3 tumor xenografts, without any significant toxic side-effects; however, the chemotherapeutic agent EPI caused weight loss in nude mice. Taken together, these findings indicated that Frondoside A in combination with CpG-ODN is a promising therapeutic strategy for bladder cancer.


Asunto(s)
Antineoplásicos , Glicósidos Cardíacos , Pepinos de Mar , Triterpenos , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Humanos , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glicósidos/farmacología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
5.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36464489

RESUMEN

Viruses are the most ubiquitous and diverse entities in the biome. Due to the rapid growth of newly identified viruses, there is an urgent need for accurate and comprehensive virus classification, particularly for novel viruses. Here, we present PhaGCN2, which can rapidly classify the taxonomy of viral sequences at the family level and supports the visualization of the associations of all families. We evaluate the performance of PhaGCN2 and compare it with the state-of-the-art virus classification tools, such as vConTACT2, CAT and VPF-Class, using the widely accepted metrics. The results show that PhaGCN2 largely improves the precision and recall of virus classification, increases the number of classifiable virus sequences in the Global Ocean Virome dataset (v2.0) by four times and classifies more than 90% of the Gut Phage Database. PhaGCN2 makes it possible to conduct high-throughput and automatic expansion of the database of the International Committee on Taxonomy of Viruses. The source code is freely available at https://github.com/KennthShang/PhaGCN2.0.


Asunto(s)
Virus , Virus/genética , Genoma Viral , Bases de Datos Factuales , Programas Informáticos , Genómica
6.
Front Microbiol ; 13: 960465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312925

RESUMEN

RNA viruses have a higher mutation rate than DNA viruses; however, RNA viruses are insufficiently studied outside disease settings. The International Committee on Taxonomy of Viruses (ICTV) is an organization set up by virologists to standardize virus classification. To better understand ICTV taxonomy and the characteristics and rules of different RNA virus families, we analyzed the 3,529 RNA viruses included in the 2020 ICTV report using five widely used metrics: length, host, GC content, number of predicted ORFs, and sequence similarity. The results show that host type has a significant influence on viral genome length and GC content. The genome lengths of virus members within the same genus are quite similar: 98.28% of the genome length differences within any particular genus are less than 20%. The species within those genera containing segmented viruses also have a similar length and number of segments. The number of predicted ORFs in the RNA viral genomes also shows a strong, statistically significant correlation with genome length. We suggest that due to the high mutation rate of RNA virus genomes, current RNA virus classification should mainly rely on protein similarities rather than nucleic acid similarities.

7.
Nutrients ; 14(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35215436

RESUMEN

Cancer remains the primary cause of death worldwide. To develop less toxic anti-cancer drugs to relieve the suffering and improve the survival of cancer patients is the major focus in the anti-cancer field. To this end, marine creatures are being extensively studied for their anti-cancer effects, since extracts from at least 10% of the marine organisms have been shown to possess anti-tumor activities. As a classic Chinese traditional medicine, sea cucumbers and compounds extracted from the sea cucumbers, such as polysaccharides and saponins, have recently been shown to exhibit anti-cancer, anti-inflammatory, and anti-oxidant effects. Holothuria leucospilota (H. leucospilota) is a tropical edible sea cucumber species that has been successfully cultivated and farmed in large scales, providing a readily available source of raw materials to support the development of novel marine anti-cancer drugs. However, very few studies have so far been performed on the biological activities of H. leucospilota. In this study, we first investigated the anti-cancer effect of H. leucospilota protein on three cancer cell lines (i.e., HepG2, A549, Panc02) and three normal cell lines (NIH-3T3, HaCaT, 16HBE). Our data showed that H. leucospilota protein decreased the cell viabilities of HepG2, A549, HaCaT, 16HBE in a concentration-dependent manner, while Panc02 and NIH-3T3 in a time- and concentration-dependent manner. We also found that the inhibitory effect of H. leucospilota protein (≥10 µg/mL) on cell viability is near or even superior to EPI, a clinical chemotherapeutic agent. In addition, our data also demonstrated that H. leucospilota protein significantly affected the cell cycle and induced apoptosis in the three cancer cell lines investigated; in comparison, it showed no effects on the normal cell lines (i.e., NIH-3T3, HaCaT and 16HBE). Finally, our results also showed that H. leucospilota protein exhibited the excellent performance in inhibiting cell immigrations. In conclusion, H. leucospilota protein targeted the cancer cell cycles and induced cancer cell apoptosis; its superiority to inhibit cancer cell migration compared with EPI, shows the potential as a promising anti-cancer drug.


Asunto(s)
Antineoplásicos , Holothuria , Neoplasias , Saponinas , Pepinos de Mar , Animales , Antineoplásicos/farmacología , Antioxidantes , Humanos , Neoplasias/tratamiento farmacológico
8.
Parasit Vectors ; 14(1): 126, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639996

RESUMEN

BACKGROUND: Dengue fever is a mosquito-borne infectious disease that has caused major health problems. Variations in dengue virus (DENV) genes are important features of epidemic outbreaks. However, the associations of DENV genes with epidemic potential have not been extensively examined. Here, we assessed new genotype invasion of DENV-1 isolated from Guangzhou in China to evaluate associations with epidemic outbreaks. METHODOLOGY/PRINCIPAL FINDINGS: We used DENV-1 strains isolated from sera of dengue cases from 2002 to 2016 in Guangzhou for complete genome sequencing. A neighbor-joining phylogenetic tree was constructed to elucidate the genotype characteristics and determine if new genotype invasion was correlated with major outbreaks. In our study, a new genotype invasion event was observed during each significant outbreak period in 2002-2003, 2006-2007, and 2013-2014. Genotype II was the main epidemic genotype in 2003 and before. Invasion of genotype I in 2006 caused an unusual outbreak with 765 cases (relative risk [RR] = 16.24, 95% confidence interval [CI] 12.41-21.25). At the middle and late stages of the 2013 outbreak, genotype III was introduced to Guangzhou as a new genotype invasion responsible for 37,340 cases with RR 541.73 (95% CI 417.78-702.45), after which genotypes I and III began co-circulating. Base mutations occurred after new genotype invasion, and the gene sequence of NS3 protein had the lowest average similarity ratio (99.82%), followed by the gene sequence of E protein (99.86%), as compared to the 2013 strain. CONCLUSIONS/SIGNIFICANCE: Genotype replacement and co-circulation of multiple DENV-1 genotypes were observed. New genotype invasion was highly correlated with local unusual outbreaks. In addition to DENV-1 genotype I in the unprecedented outbreak in 2014, new genotype invasion by DENV-1 genotype III occurred in Guangzhou.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/patogenicidad , Dengue/epidemiología , Brotes de Enfermedades , Genotipo , Serogrupo , China/epidemiología , Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Genoma Viral , Humanos , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
9.
Dev Comp Immunol ; 118: 103975, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33383068

RESUMEN

Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates the functions of interleukin-2 (IL-2) at the levels of transcription, splicing and translation, and plays other critical roles in the immune system. ILF2 is well-documented in vertebrates, while little is currently known in crustacean species such as the Pacific white shrimp (Litopenaeus vannamei). In the present study, five cDNA for spliced isoforms of Lv-ILF2 were identified, in which four of them are the full-length long isoforms (Lv-ILF2-L1, Lv-ILF2-L2, Lv-ILF2-L3 and Lv-ILF2-L4) and one of them is a truncated short isoform (Lv-ILF2-S). The whole sequence of ILF2 gene from L. vannamei was obtained, which is 11,680 bp in length with 9 exons separated by 8 introns. All five isoforms contain a domain associated with zinc fingers (DZF). Two alternative splicing types (alternative 5' splice site and alternative 3' splice site) were identified in the five isoforms. The Lv-ILF2 mRNA showed a broad distribution in all detected tissues, and the Lv-ILF2-L transcript levels were higher than those of Lv-ILF2-S in corresponding tissues. The mRNA levels of Lv-ILF2-S in the hepatopancreas, heart, muscle and stomach, but not in the eyestalk, were significantly increased after challenges with Vibrio harveyi or lipopolysaccharide (LPS), while no significant changes were observed for the transcript levels of Lv-ILF2-L in these tissues under the same immune stimulants. On the contrary, the transcript levels of neither Lv-ILF2-S nor Lv-ILF2-L were affected by challenges of polyinosinic: polycytidylic acid [Poly (I:C)]. In addition, after knockdown of the Lv-ILF2 mRNA level by siRNA, the mortality of shrimp and the hepatopancreatic bacterial numbers were significantly increased under V. harveyi challenge, indicating that Lv-ILF2 might participate in the immune defenses against V. harveyi invasion. Collectively, our study here supplied the first evidence for a novel splicing mechanism of ILF2 transcripts, and provided a functional link between the Lv-ILF2 isoforms and the capacity against pathogenic Vibrio in penaeid shrimp.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Inmunidad Innata/genética , Proteína del Factor Nuclear 45/metabolismo , Penaeidae/inmunología , Vibrio/inmunología , Empalme Alternativo/inmunología , Animales , Acuicultura , Proteínas de Artrópodos/genética , Técnicas de Silenciamiento del Gen , Proteína del Factor Nuclear 45/genética , Penaeidae/microbiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
10.
Anticancer Agents Med Chem ; 20(13): 1571-1581, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32357825

RESUMEN

AIMS: The purpose of our study was to explore the combination effect of epirubicin and Bacillus Calmette Guerin (BCG) and its mechanism. BACKGROUND: Bladder cancer is a threat to human health worldwide. Commonly used chemotherapy drugs and biotherapy have significant therapeutic effects on bladder cancer, but the mechanism and combined effects are still unclear. OBJECTIVE: To evaluate the anti-cancer effect of epirubicin combined with BCG on human bladder cancer cells, our studies were carried out. METHODS: The viability of human bladder cancer cells with epirubicin and/or BCG treatments was examined by Cell Counting Kit-8 (CCK-8) assay. Apoptosis and cell cycle phase were determined by flow cytometry analysis. Pre-apoptosis factors of caspase-3, p53, B-cell lymphoma 2 associated X protein (Bax) and anti-apoptosis factor of B-cell lymphoma 2 (Bcl-2) were detected by western blot. RESULTS: The viability of human bladder cancer with epirubicin or BCG treatment was decreased and the viability with epirubicin combined with BCG treatment was decreased more, which were determined by CCK-8 assay. Both epirubicin and BCG increased the apoptosis rate of human bladder cancer and arrested more cells into G0/G1 phase, which were tested by flow cytometry. The expression of caspase-3, p53 and Bax was increased and the expression of Bcl-2 was decreased with epirubicin treatment on human bladder cells, which were analyzed by western blot. The expression of caspase-3 and p53 was increased with BCG treatment, which was examined by western blot. CONCLUSION: Epirubicin induced apoptosis in human bladder cancer cells by up-regulating the expression of proapoptotic factors (caspase-3, p53 and Bax) and down-regulating the expression of anti-apoptotic factor (Bcl-2). BCG promoted apoptosis of human bladder cancer cells by up-regulating the expression of caspase-3 and p53. BCG plays a potential role at the time of the combination of epirubicin and BCG on bladder cancer cells in early stage. Both epirubicin and BCG affected cell cycle distribution via arresting more bladder cancer cells at G0/G1 phase, which ultimately led bladder cancer proliferation in vitro and promoted apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Vacuna BCG/farmacología , Epirrubicina/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Antineoplásicos/química , Vacuna BCG/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epirrubicina/química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
11.
Arch Med Res ; 51(3): 233-244, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32139108

RESUMEN

OBJECTIVE: To evaluate the anti-cancer effect of unmethylated cytosine-phosphorothioate-guanine (CpG)-containing oligodeoxynucleotides (ODNs) on human bladder cancer UM-UC-3 cells, our study was carried out. METHODS: The viability of cells (UM-UC-3, T24 and SV-HUC-1) with CpG ODN treatments was examined by cell counting kit-8 (CCK-8) assay. Apoptosis and cell cycle phase were determined by flow cytometry analysis. Pre-apoptosis factors of caspase-3, p53, B-cell lymphoma 2 associated X protein (Bax) and anti-apoptosis factor of B-cell lymphoma 2 (Bcl-2) were detected by western blot. RESULTS: Experimental results showed that the viability of human bladder cancer cells (UM-UC-3 and T24) with CpG ODN treatment was decreased and the viability of human normal urothelial cells (SV-HUC-1) with CpG ODN treatment was increased with time-dependance manner. Moreover, CpG ODN increased the apoptosis rate of UM-UC-3 cells and arrested more cells in G0G1 phase. Furthermore, the expression of caspase-3, p53 and Bax were increased and the expression of Bcl-2 was decreased with CpG ODN treatment on UM-UC-3 cells. CONCLUSION: CpG ODN promoted the proliferation of normal urinary transitional epithelial cells (SV-HUC-1) and inhibited the cell viability of human bladder cancer cells (UM-UC-3 and T24) in vitro. CpG ODN induced the apoptosis of human bladder cancer (UM-UC-3) cells in a cascade progress via enhancing the expression of caspase-3, p53 and Bax, and inhibiting the expression of Bcl-2 with significant time-dependancy. CpG ODN inhibited cell cycle distribution of human bladder cancer (UM-UC-3) cells with more cells were arrested in G0G1 phase. This study suggested that the CpG ODN is the potential candidate on human bladder cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Oligodesoxirribonucleótidos/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Caspasa 3/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citosina/farmacología , Células Epiteliales/fisiología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Guanina/farmacología , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Proteína X Asociada a bcl-2/metabolismo
12.
Ecohealth ; 17(1): 160-173, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32016718

RESUMEN

The risk of a zoonotic pandemic disease threatens hundreds of millions of people. Emerging infectious diseases also threaten livestock and wildlife populations around the world and can lead to devastating economic damages. China and the USA-due to their unparalleled resources, widespread engagement in activities driving emerging infectious diseases and national as well as geopolitical imperatives to contribute to global health security-play an essential role in our understanding of pandemic threats. Critical to efforts to mitigate risk is building upon existing investments in global capacity to develop training and research focused on the ecological factors driving infectious disease spillover from animals to humans. International cooperation, particularly between China and the USA, is essential to fully engage the resources and scientific strengths necessary to add this ecological emphasis to the pandemic preparedness strategy. Here, we review the world's current state of emerging infectious disease preparedness, the ecological and evolutionary knowledge needed to anticipate disease emergence, the roles that China and the USA currently play as sources and solutions to mitigating risk, and the next steps needed to better protect the global community from zoonotic disease.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Cooperación Internacional , Zoonosis/epidemiología , Animales , Animales Salvajes , China , Enfermedades Transmisibles , Enfermedades Transmisibles Emergentes/transmisión , Salud Global , Humanos , Pandemias , Zoonosis/transmisión
13.
Technol Cancer Res Treat ; 18: 1533033819873636, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31547786

RESUMEN

OBJECTIVE: Unmethylated cytosine-phosphorothioate-guanine oligodeoxynucleotide, a synthetic oligodeoxynucleotide, has been used as an adjuvant in clinic and in the antitumor activity. However, the antitumor mechanism of cytosine-phosphorothioate-guanine oligodeoxynucleotide against human bladder cancer is unknown. The purpose of this study is to evaluate the cytotoxicity and molecular mechanism of anticancer effect of cytosine-phosphorothioate-guanine oligodeoxynucleotide on T24 cells (a human bladder cancer cell line). METHODS: The cytotoxic activity of cytosine-phosphorothioate-guanine oligodeoxynucleotide was examined by cell viability assay in the presence and absence of 5-fluorouracil, respectively. Apoptosis and cell-cycle phase distribution were detected by flow cytometry analysis. To investigate the molecular mechanisms of cytosine-phosphorothioate-guanine oligodeoxynucleotide cytotoxicity, the expression of antiapoptotic factors (B-cell lymphoma-2 and Survivin, ß-actin as control) in RNA, and protein level was assayed by quantitative real-time polymerase chain reaction and automated capillary Western blot. RESULTS: The inhibition ratio of T24 cells treated with both cytosine-phosphorothioate-guanine oligodeoxynucleotide and 5-fluorouracil was higher than those treated with either cytosine-phosphorothioate-guanine oligodeoxynucleotide or 5-fluorouracil alone. In the combination group (cytosine-phosphorothioate-guanine oligodeoxynucleotide and 5-fluorouracil), the apoptosis rate was significantly increased, and more cells were arrested at "S" and "G2/M" phases compared to those in cytosine-phosphorothioate-guanine oligodeoxynucleotide or 5-fluorouracil alone. Furthermore, the expression of antiapoptotic factors was decreased by cytosine-phosphorothioate-guanine oligodeoxynucleotide alone or combined with 5-fluorouracil. CONCLUSION: Cytosine-phosphorothioate-guanine oligodeoxynucleotide promoted apoptosis and enhanced the chemosensitivity of 5-fluorouracil in T24 cells. Cytosine-phosphorothioate-guanine oligodeoxynucleotide downregulated the expression of antiapoptotic factors and inhibited cell-cycle phase by arresting more cells at "S" and "G2/M" phases. This study indicated the potential ability of cytosine-phosphorothioate-guanine oligodeoxynucleotide as a candidate drug for human bladder cancer.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Oligodesoxirribonucleótidos/farmacología , Biomarcadores , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Humanos
14.
BMC Infect Dis ; 19(1): 590, 2019 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-31277583

RESUMEN

BACKGROUND: Transfusion-Transmitted Zika virus (TT-ZIKV) has become an emerging threat to world blood banks due to the fast spread of ZIKV epidemics and high rate of asymptomatic infections. For the risk assessment of ZIKV infection in blood products, relevant studies in blood donations or blood donors tested for ZIKV were collected and analyzed systematically. The overall prevalence of ZIKV infection were estimated through meta-analysis and potential risk factors were detected. The results will provide important clues for the protocol design of blood screening tests. METHODS: Relevant articles about the rate of ZIKV detected in blood samples were identified from PubMed, Scopus and Web Of Science using key terms search strategy until October 7, 2017. Eligible articles were screened following inclusion and exclusion criteria. Meta-analysis and subgroup analyses were performed by software R3.4.1. Overall postdonation and posttransfusion follow-ups were analyzed. RESULTS: Ten literatures (528,947 blood samples) were included for meta-analysis. The overall pooled prevalence of ZIKV (RNA and antibody) in blood donations was 1.02% (95%CI 0.36-1.99). The pooled prevalence of ZIKV RNA in blood donations was 0.85% (95%CI 0.21-1.88) less than the pooled prevalence of anti-ZIKV antibodies 1.61% (95%CI 0.03-5.21), however the difference was not statistically significant (p = 0.52). The prevalence varied significantly in different geographical regions (p < 0.001). Blood donations were more than two times likely to be infected by ZIKV in Zika epidemic period (1.37, 95%CI 0.91-1.91) than in non-epidemic period (0.61, 95%CI 0-2.55). The prevalence of anti-ZIKV antibodies (1.61, 95%CI 0.03-5.21) was almost twice as much as ZIKV nucleic acid detected in blood donations (0.85, 95%CI 0.21-1.88). However, statistically significant differences were not observed. A total of 122 ZIKV positive blood donors were followed, of which 48 (39%) reported symptoms postdonation, but none of the 13 followed recipients reported any clinical symptoms related to Zika infection posttransfusion. CONCLUSION: The pooled prevalence of Zika infection in blood donations was 1.02%. The prevalence varied greatly and reached to high-risk level in most of the situations. The results suggest that nucleic acid tests (NAT) for blood screening and pathogen reduction/inactivation technology (PRT) should be implemented in Zika-endemic areas and appropriate strategies should be designed according to different conditions. More studies are needed in the future to provide more evidence.


Asunto(s)
Donantes de Sangre/estadística & datos numéricos , Infección por el Virus Zika , Virus Zika , Anticuerpos Antivirales/sangre , Humanos , Prevalencia , ARN Viral/sangre , Virus Zika/genética , Virus Zika/inmunología , Infección por el Virus Zika/sangre , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/epidemiología
15.
Chin Med J (Engl) ; 132(14): 1645-1653, 2019 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-31268910

RESUMEN

BACKGROUND: Zika virus (ZIKV) has emerged as a global pathogen causing significant public health concerns. China has reported several imported cases where ZIKV were carried by travelers who frequently travel between China and ZIKV-endemic regions. To fully characterize the ZIKV strains isolated from the cases reported in China and assess the risk of ZIKV transmission in China, comprehensive phylogenetic and genetic analyses were performed both on all ZIKV sequences of China and on a group of scientifically selected ZIKV sequences reported in some of the top interested destinations for Chinese travelers. METHODS: ZIKV genomic sequences were retrieved from the National Center for Biotechnology Information database through stratified sampling. Recombination event detection, maximum likelihood (ML) phylogenetic analysis, molecular clock analysis, selection pressure analysis, and amino acid substitution analysis were used to reconstruct the epidemiology and molecular transmission of ZIKV. RESULTS: The present study investigated 18 ZIKV sequences from China and 70 sequences from 16 selected countries. Recombination events rarely happens in all ZIKV Asian lineage. ZIKV genomes were generally undergone episodic positive selection (17 sites), and only one site was under pervasive positive selection. All ZIKV imported into China were Asian lineage and were assigned into two clusters: Venezuela-origin (cluster A) and Samoa-origin cluster (cluster B) with common ancestor from French Polynesia. The time of most recent common ancestors of Cluster A dated to approximately 2013/11 (95% highest posterior density [HPD] 2013/06, 2014/03) and cluster B dated to 2014/08 (95% HPD 2014/02, 2015/01). Cluster B is more variable than Cluster A in comparison with other clusters, but no varied site of biological significance was revealed. ZIKV strains in Southeast Asia countries are independent from strains in America epidemics. CONCLUSIONS: The genetic evolution of ZIKV is conservative. There are two independent introductions of ZIKV into China and China is in danger of autochthonous transmission of ZIKV because of high-risk surrounding areas. Southeast Asia areas have high risk of originating the next large-scale epidemic ZIKV strains.


Asunto(s)
Proteínas no Estructurales Virales/metabolismo , Infección por el Virus Zika/genética , Virus Zika/patogenicidad , China , Evolución Molecular , Genoma Viral/genética , Funciones de Verosimilitud , Filogenia , Estructura Secundaria de Proteína , Medición de Riesgo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Virus Zika/genética , Infección por el Virus Zika/transmisión
16.
PeerJ ; 7: e6709, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106045

RESUMEN

OBJECTIVE: Sturgeons are considered living fossils, and have a very high conservation and economic value. Studies on the molecular mechanism of sturgeon gonadal development and sex differentiation would not only aid in understanding vertebrate sex determination but also benefit sturgeon aquaculture. Piwi-interacting RNAs (piRNAs) have been shown to function in germline or gonadal development. In this study, we performed small RNA deep sequencing and microarray hybridization to identify potential sturgeon piRNAs. METHODS: Male and female sturgeon gonads were collected and used for small RNA sequencing on an Illumina HiSeq platform with the validation of piRNA expression by microarray chip. The program Bowtie and k-mer scheme were performed to filter small RNA reads and discover potential sturgeon piRNAs. A known piRNA database, the coding sequence (CDS), 5' and 3' untranslated region (UTR) database of the A. Schrenckii transcriptome, Gene Ontology (GO) database and KEGG pathway database were searched subsequently to analyze the potential bio-function of sturgeon piRNAs. RESULTS: A total of 875,679 putative sturgeon piRNAs were obtained, including 93 homologous to known piRNAs and hundreds showing sex-specific and sex-biased expression. Further analysis showed that they are predominant in both the ovaries and testes and those with a sex-specific expression pattern are nearly equally distribution between sexes. This may imply a relevant role in sturgeon gonadal development. KEGG pathway and GO annotation analyses indicated that they may be related to sturgeon reproductive processes. CONCLUSION: Our study provides the first insights into the gonadal piRNAs in a sturgeon species and should serve as a useful resource for further elucidation of the gene regulation involved in the sex differentiation of vertebrates. These results should also facilitate the technological development of early sex identification in sturgeon aquaculture.

17.
Biol Pharm Bull ; 41(12): 1804-1808, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30232304

RESUMEN

Avian influenza A (H7N9) virus has caused several epidemics and infection in both human and poultry. With mutation, the H7N9 virus gained its fifth endemic in China. Early diagnosis is crucial for the control of viral spread in poultry and prognosis of infected patients. In this study, we developed and evaluated a lateral flow dipstick recombinase polymerase amplification (LFD-RPA) assay for rapid detection of both hemagglutinin and neuraminidase gene of H7N9. Our H7-LFD-RPA and N9-LFD-RPA assay were able to detect 32 fg H7N9 nucleic acid which is more convenient and rapid than previous methods. Through detecting 50 influenza positive samples, cross-reaction was not found with other subtypes of influenza virus. The 100% analytical specificity and sufficient analytical sensitivity results agreed the real time RT-PCR assay. The results data demonstrated that our method performed well and could be applied to the detection of H7N9 virus. This LFD-RPA assay provides a candidate method for rapid point-of-care diagnosis of H7N9.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/genética , Animales , Aves , ARN Polimerasas Dirigidas por ADN/análisis , Humanos , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/genética , Factores de Tiempo
18.
Curr Microbiol ; 75(10): 1352-1361, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29922970

RESUMEN

Bats can be divided into frugivory, nectarivory, insectivory, and sanguivory based on their diets, and are therefore ideal wild animal models to study the relationship between diets and intestinal microflora. Early studies of bat gut bacteria showed that the diversity and structure of intestinal bacterial communities in bats are closely related to dietary changes. Worthy of note, intestinal microbes are composed of bacteria, fungi, protozoa, and archaea. Although the number of gut fungi is much lower than that of gut bacteria, they also play an important role in maintaining the host homeostasis. However, there are still few reports on the relationship between the gut mycobiota and the dietary habits of the host. In addition, bats have also been shown to naturally transmit pathogenic viruses and bacteria through their feces and saliva, but fungal infections from bat are less studied. Here, we used high-throughput sequencing of bacterial 16S and eukaryotic 18S rRNA genes in the V4 and V9 regions to characterize fecal bacterial and fungal microbiota in phytophagous and insectivorous bats in South China. The results show that the gut microbiota in bats were dominated by bacterial phyla Proteobacteria, Firmicutes, Tenericutes and Bacteroidetes, and fungal phyla Ascomycota and Basidiomycota. There was a significant difference in the diversity of bacterial and fungal microbiota between the groups, in addition to specific bacteria and fungi populations on each of them. Of note, the number of fungi in the feces of herbivorous bats is relatively higher. Most of these fungi are foodborne and are also pathogens of humans and other animals. Thus, bats are natural carriers of fungal pathogens. The current study expands the understanding of the bat gut bacterial and fungal mycobiota and provides further insight into the transmission of fungal pathogens.


Asunto(s)
Alimentación Animal , Quirópteros , Heces/microbiología , Microbiota , Animales , Bacterias/clasificación , Bacterias/genética , Biodiversidad , China , Femenino , Hongos/clasificación , Hongos/genética , Humanos , Masculino , Metagenoma , Metagenómica/métodos , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética
19.
Ecol Evol ; 8(7): 3636-3647, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29686845

RESUMEN

Diet regulation behavior can mediate the consequences of imbalanced diets for animal well-being, particularly for captive species that have little dietary choice. Dasyurids (carnivorous marsupials) are of conservation concern in Australia, and many species are in captive breeding programmes. However, their nutrient targets and dietary regulation behaviors are poorly understood, a limitation that may decrease the breeding success and well-being of captive animals. We tested how dietary protein content influenced the intake and utilization of nutrients, physical activity, and body mass of fat-tailed dunnarts Sminthopsis crassicaudata. Twelve adult dunnarts from six sibling pairs (one female and one male per pair) were provided ad libitum access to three diets in a repeated measures design: cat food, cat food supplemented with raw lean beef (1:1), and cat food supplemented with cooked lean beef (1:1). Food intake, activity level, and fecal output were measured daily. Dunnarts significantly decreased food intake, increased protein digestion, and physical activity, but body mass was unchanged when on the high-protein diet compared to the normal cat food diet. These observations suggest a capacity of dunnarts to maintain constant body mass using a dynamic balance of feeding, digestion, and activity. We also found a significant effect of family, with differences between families as large as the difference between the diet treatments, suggesting a genetic component to diet selection. The nutrient regulation responses of dunnarts to high-protein diets and the strong family effects provide important messages for the management of populations of small carnivores, including the aspects of dietary manipulation and conservation of genetic diversity.

20.
PeerJ ; 5: e4140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302388

RESUMEN

The Malayan pangolin (Manis javanica) is an unusual, scale-covered, toothless mammal that specializes in myrmecophagy. Due to their threatened status and continuing decline in the wild, concerted efforts have been made to conserve and rescue this species in captivity in China. Maintaining this species in captivity is a significant challenge, partly because little is known of the molecular mechanisms of its digestive system. Here, the first large-scale sequencing analyses of the salivary gland, liver and small intestine transcriptomes of an adult M. javanica genome were performed, and the results were compared with published liver transcriptome profiles for a pregnant M. javanica female. A total of 24,452 transcripts were obtained, among which 22,538 were annotated on the basis of seven databases. In addition, 3,373 new genes were predicted, of which 1,459 were annotated. Several pathways were found to be involved in myrmecophagy, including olfactory transduction, amino sugar and nucleotide sugar metabolism, lipid metabolism, and terpenoid and polyketide metabolism pathways. Many of the annotated transcripts were involved in digestive functions: 997 transcripts were related to sensory perception, 129 were related to digestive enzyme gene families, and 199 were related to molecular transporters. One transcript for an acidic mammalian chitinase was found in the annotated data, and this might be closely related to the unique digestive function of pangolins. These pathways and transcripts are involved in specialization processes related to myrmecophagy (a form of insectivory) and carbohydrate, protein and lipid digestive pathways, probably reflecting adaptations to myrmecophagy. Our study is the first to investigate the molecular mechanisms underlying myrmecophagy in M. javanica, and we hope that our results may play a role in the conservation of this species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...